Servo-u 呼吸机
Servo-u 呼吸机
Servo-u 为您提供许多定制化的肺保护和撤机策略。这些都是易于理解、实施和使用,使先进的定制化通气策略融入到日常病人护理中变得简单。
*本页所示的Servo呼吸机和/或呼吸机选项可能未在您的国家上市,或正在等待监管部门的批准,以待上市。联系您的Getinge代表获得更多信息。
概况
易于使用

基于具体情况的说明
Servo-u 提供了从使用前检查到初始参数设置和整个处理过程的所有信息指导。

安全范围参数
“安全范围”工具可快速直观地进行更改参数,而动态图像也能解释这些变化是如何影响患者呼吸的。

选择观点
- 基本,高级和环形
- 距离和家庭
- Servo Compass和Pes & PL

报警管理
当警报被触发时,框架就会亮起来,而且从任何角度都可以很容易地看到这种视觉信号。屏幕上的检查列表可以帮助您作出响应并进一步避免意外报警。
机械通气可能很复杂,但呼吸机不能。
Servo-u为保护性通气提供了许多有效选择。并且更加容易接受、理解和操作。[3] 这意味着,在机械通气的控制、支持、自主呼吸测试以及无创通气的所有阶段,患者可从更多先进的肺保护通气策略中受益。
Auto SRM 的临床表现以及如何应用开放肺方法
问题和解答
个性化通气
个性化肺保护
如何避免机械通气引起的肺损伤?特别是急性肺损伤或急性呼吸窘迫综合征(ALI/ARDS) 患者? 这种情况下,可能需要根据个人情况量身定制保护策略。这正是我们的专长。我们的个性化肺保护工具都是为了帮助您持续评估风险、监测关键变量、加快干预和改善患者与呼吸机的交互作用而设计的。

开放式肺工具
开放式肺工具帮助您实时和回顾性地评估肺力学和每个周期的气体交换。它能灵活指导您完成肺复张策略,俯卧定位和体外生命支持,帮助您设置定制化的PEEP,并降低驱动压力。压力指数、二氧化碳消除和跨肺压力也是集成式的。

跨肺压力
为了简化食管测量和提高准确性,我们开发了一种自动操作的方法来验证气囊的定位和填充。诊断视图提供食管 (Pes) 和经肺 (PL) 压力波形,并为控制和自然通气的安全性评估提供关键参数。现在,气道和经肺压力之间的关系更加直观了。

目标保护性潮气量
PRVC 是一个真正的容量定向模式,可以自动适应吸气压力,以说明肺部力学的快速变化。控制呼吸和辅助呼吸的分离调节减少了潮气量的变化,并确保了较低的驱动压力。因此,当患者开始自发呼吸时,可以维持低潮气量策略。

舒缓的氦氧混合气疗法
针对由于呼吸道阻力和各种类型的呼吸疾病引起的呼吸困难的患者,Heliox是我们为他们提供的一种治疗手段。Heliox是一种氦和氧的混合物,安全、可靠、易于使用。它的密度低,有利于层流和最小化气道压力。上面的插图显示Heliox疗法促进了典型哮喘患者更好的层流,减少湍流。[12]
个性化脱机
如果患者的大脑可以引导机械呼吸机,从而更快地做到轻松呼吸,这个听起来怎么样?这就是我们主要的脱机工具背后的理念,该工具可让您监控隔肌活动度(Edi),并在NAVA模式下提供个性化的帮助。与其他工具和疗法(如无创通气和高流量疗法)一起,有多种方法可以个性化脱机,以使患者脱离呼吸机并恢复正常呼吸。
膈肌监测的早期脱机
最近的临床研究表明,膈肌无力在ICU患者中很普遍(23–84%),预后不佳。[12] Servo-u可以让您监控患者膈肌活动(Edi),以实现成功脱机的定制化通气。

简化过渡到自主呼吸
自动模式可帮助患者从控制通气自动过渡到自主呼吸。这是一种交互模式,可根据患者的意愿在控制和支持通气之间相互切换。Automode有三种组合:
安全投资
安全投资
优化正常运行时间、效率—减少操作压力
Servo-u 是针对目前和未来的一项投资。灵活、模块化的平台随时准备适应不断变化的临床需求,我们的专家随时为您提供支持。

模块化平台
全面的软件选项和可互换使用的硬件模块允许您根据当前需求进行配置,并可随需求的变化进行升级。这意味着模块可在不同的SERVO-U呼吸机之间更换使用,从而降低整体成本。
培训
通过电子学习课程提高您的知识。
下载
相关产品
所有参考
-
Data on file Maquet Critical Care AB.
-
Morita PP, Weinstein PB, Flewwelling CJ, Bañez CA, Chiu TA, Iannuzzi M, Patel AH, Shier AP, Cafazzo JA. The usability of ventilators: a comparative evaluation of use safety and user experience. Critical Care201620:263.
-
http://ccforum.biomedcentral.com/articles/10.1186/s13054-016-1431-1
-
Fan E, Del Sorbo L, Goligher EC, et al An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017 2017 May 1;195(9):1253-1263. doi: 10.1164/rccm.201703-0548ST.
-
Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA. 2018;319(7):698–710. doi:10.1001/jama.2017.21907
-
Data on file Maquet Critical Care AB
-
Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007 Jan 15;175(2):160-6.
-
Grasso S, Stripoli T, De Michele M, et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007 Oct 15;176(8):761-7.
-
Ferrando C, et al. Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance. Crit Care. 2015 Jan 13;19:9. doi: 10.1186/s13054-014-0726-3.
-
Kacmarek RM, et al. Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial. Crit Care Med. 2016 Jan;44(1):32-42.
-
Goligher EC, Hodgson CL, Adhikari NKJ, et al. Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome. Ann Am Thorac Soc 2017;14:S304-11. 10.1513/AnnalsATS.201704-340OT
-
Herman J, Baram M. In the Midst of Turbulence, Heliox Kept Her Alive. Ann Am Thorac Soc. 2017. 2 Pilbeam
-
Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017 Oct;43(10):1441-1452.
-
Ducharme-Crevier L, et al. Interest of Monitoring Diaphragmatic Electrical Activity in the Pediatric Intensive Care Unit. Crit Care Res Pract. 2013;2013:384210.
-
Emeriaud G, Larouche A, Ducharme-Crevier L, Massicotte E, Fléchelles O, Pellerin-Leblanc AA, Orneau S, Beck J, Jouvet P. Evolution of inspiratory diaphragm activity in children over the course of the PICU stay.
-
Kallio M, et al. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care – a randomized controlled trial. Pediatr Pulmonol. 2015 Jan;50(1):55-62.
-
Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014 Jun;20(3):352-8.
-
Blankman P, et al. Ventilation distribution measured with EIT at varying levels of PS and NAVA in Patients with ALI. Intensive Care Med. 2013 Jun;39(6):1057-62.
-
Brander L, et al. NAVA decreases ventilator induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Med. 2009 Nov;35(11):1979-89.
-
Patroniti N, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012 Feb;38(2):230-9.
-
Cecchini J, et al. Increased diaphragmatic contribution to inspiratory effort during neurally adjusted ventilatory assistance versus pressure support: an electromyographic study. Anesthesiology. 2014
-
Di Mussi R, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016 Jan 5;20(1):1.
-
Yonis H, et al. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV). BMC Anesthesiol. 2015 Aug 8;15:117
-
Piquilloud L, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011 Feb;37(2):263-71.
-
Kallio M, et al. Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care – a randomized controlled trial. Pediatr Pulmonol. 2015 Jan;50(1):55-62.
-
Piastra M, et al. Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: nested study. J Crit Care. 2014 Apr;29(2):312.e1-5.
-
de la Oliva P, et al. Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. Intensive Care Med. 2012 May;38(5):838-46.
-
Delisle S, et al. Effect of ventilatory variability on occurrence of central apneas. Respir Care. 2013 May;58(5):745-53.
-
Delisle S, et al. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011 Sep 28;1(1):42.
-
Bellani G, et al. Clinical assessment of autopositive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology. 2014 Sep;121(3):563-71.
-
Doorduin J, et al. Automated patient-ventilator interaction analysis during neurally adjusted noninvasive ventilation and pressure support ventilation in chronic obstructive pulmonary disease. Crit Care. 2014 Oct 13;18(5):550.
-
Ducharme-Crevier L, et al. Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. Crit Care. 2015 Feb 17;19:44.
-
Beck J, Brander L, Slutsky AS, Reilly MC, Dunn MS, Sinderby C. Non-invasive neurally adjusted ventilatory assist in rabbits with acute lung injury. Intensive Care Med. 2008;34:316–323.
-
Lee J, Kim HS, Jung YH, Shin SH, Choi CW, Kim EK, Kim BI, Choi JH. Non-invasive neurally adjusted ventilatory assist in preterm infants: a randomised phase II crossover trial. Arch Dis Child Fetal Neonatal Ed. 2015 Nov;100(6):F507-13.