Tecnología PiCCO
Tecnología PiCCO
Monitorización hemodinámica de máximo nivel
Simplifique la hemodinámica y empiece a comprender los trastornos más complejos con PiCCO
Visión general
La monitorización de los parámetros fisiológicos es fundamental para la gestión de los pacientes en cuidados intensivos dirigida al cumplimiento de objetivos. Tras muchos años formando parte de la práctica clínica, los métodos de monitorización más invasivos se están viendo cada vez más cuestionados. La solución a este debate es la tecnología PiCCO.
La tecnología PiCCO es una herramienta sencilla, rentable y menos invasiva para la comprobación de los principales parámetros hemodinámicos de los pacientes en estado crítico.
-
Cuantificación a pie de cama del edema pulmonar
-
Cuantificación de la precarga cardíaca
-
Varios puntos de acceso arterial, pacientes pediátricos incluidos
-
Gasto cardíaco preciso y calibrado latido a latido
-
Parámetros volumétricos de precarga en lugar de presiones de llenado
-
Poscarga, contractilidad y resistencia vascular
Indicaciones
-
Shock séptico
-
Shock cardiogénico
-
Shock traumático
-
SDRA
-
Grandes quemados
-
Pancreatitis
-
Procedimientos quirúrgicos de alto riesgo
Catéter PiCCO

Monitorización hemodinámica de máximo nivel
- La tecnología PiCCO combina el análisis del contorno del pulso arterial mediante el innovador algoritmo PiCCO con la precisa calibración que ofrece la termodilución transpulmonar
- Acceso arterial a través de las arterias femoral, braquial y axilar
- Aplicación en niños/pediatría con catéteres PiCCO especiales en tres calibres distintos de la escala francesa
Conforme con la Directiva 93/42/CEE, este producto sanitario dispone de marcado CE.

La forma más eficaz y segura de aplicar esta tecnología consiste en la utilización del kit completo
El kit consta de los siguientes componentes:
- Catéter PiCCO con instrumentos de inserción Seldinger, guía, cánula, dilatador
- Kit de monitorización PiCCO con carcasa con sensor de suero inyectado y transductor de presión
Módulo PiCCO

Gestión hemodinámica de pacientes inestables con el módulo PiCCO para PulsioFlex
- El módulo PiCCO actualiza su monitor PulsioFlex para incorporar el uso de la tecnología PiCCO
- PiCCO optimiza la precisión y fiabilidad de la monitorización hemodinámica mediante la calibración por termodilución transpulmonar
- El módulo PiCCO facilita el diagnóstico del edema pulmonar mediante la medición del agua pulmonar extravascular
- Los parámetros ofrecidos por el módulo PiCCO —volumen de precarga, resistencia vascular, poscarga y contractilidad— permiten al médico aplicar al paciente tratamientos centrados, incluso con inotropos y vasopresores
Conforme con la Directiva 93/42/CEE, este producto sanitario dispone de marcado CE.

La tecnología PiCCO está disponible con todas sus funciones en forma de módulo integrado para monitores de paciente IntelliVue y CMS de Philips Medical Systems
La tecnología PiCCO también está disponible con todas sus funciones en forma de módulo integrado para monitores de paciente IntelliVue y CMS de Philips Medical Systems. Si desea obtener más información acerca del módulo, consulte nuestra página de colaboraciones o diríjase a la web de Philips.
Las especificaciones técnicas están sujetas a modificaciones sin previo aviso
Metodología
Dos componentes de la tecnología PiCCO
La tecnología PiCCO se basa en dos principios básicos: la termodilución transpulmonar y el análisis del contorno del pulso. Estos dos principios permiten realizar el cálculo de los parámetros hemodinámicos y están clínicamente probados y establecidos desde hace más de 20 años.

Análisis del contorno del pulso arterial
El análisis del contorno del pulso ofrece información constante, mientras que la termodilución transpulmonar proporciona mediciones estáticas. La termodilución transpulmonar se utiliza para calibrar los parámetros continuos del contorno del pulso.

Termodilución transpulmonar
Para llevar a cabo la medición de la termodilución transpulmonar se inyecta un bolo definido (15 ml de solución salina normal y fría al 0,9 %) a través de un catéter venoso central. El bolo frío pasa por el corazón derecho, los pulmones y el corazón izquierdo, detectado en todo momento por el catéter PiCCO, que suele ubicarse en la arteria femoral. Este procedimiento se debe repetir unas tres veces en menos de diez minutos con el fin de garantizar la disponibilidad de una media fiable para la calibración del dispositivo, así como para el cálculo de los parámetros de la termodilución. Estos parámetros de termodilución, que solo se actualizan durante la realización del procedimiento de termodilución, deben volver a comprobarse siempre que se produzca un cambio significativo en el estado o el tratamiento del paciente. Se recomienda calibrar el sistema un mínimo de dos o tres veces al día, en función del estado del paciente.
Referencias
General
Assaad, S., Popescu, W. y Perrino, A.
Fluid management in thoracic surgery
Curr. Opin. Anaesthesiol., 2013; 26(1): 31-9
Sakka. S. G., Reuter, D. A. y Perel, A.
The transpulmonary thermodilution technique
J. Clin. Monit. Comput., 2012; 26: 347-53
Oren-Grinberg, A.
The PiCCO Monitor
International Anesthesiology Clinics, 2010; 48(1): 57 – 85
Reuter, D., Huang, C., Edrich, T., Shernan, S. K. y Eltzschig, H. K.
Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives
Anesth. Analg,, 2010; 110(3): 799-811
King, D. y Price, A. M.
Measuring cardiac output using the PiCCO system
British Journal of Cardiac Nursing, 2008; 3 (11): 512-519
Malbrain, M., De Potter, P. y Deeren, D.
Cost Effectiveness of minimally invasive hemodynamic monitoring
En Vincent, J. L. (ed.), Yearbook of Intensive Care and Emergency Medicine, 2005: 603-18
Genahr, A. y McLuckie, A.
Transpulmonary thermodilution in the critically ill
Brit. J. Int. Care, 2004: 6-10
Gasto cardiaco
Reuter, D. y Goetz, A. E.
Messung des Herzzeitvolumens (artículo en alemán)
Anaesthesist, 2005; 54:1135-53
Precarga
Eichhorn, V., Goepfert, M. S., Eulenburg, C., Malbrain, M. L. y Reuter, D. A.
Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: A metaanalysis of the literature
Med. Intensiva, 2012; 36(7): 467-74
Della Rocca, G., Costa, M. G. y Pietropaoli, P.
How to measure and interpret volumetric measures of preload
Curr. Opin. Crit. Care, 2007; 13(3): 297-302
Agua pulmonar
Zhang, Z., Lu, B. y Ni, H.
Prognostic value of extravascular lung water index in critically ill patients: A systematic review of the literature
J. Crit. Care, 2012; 27(4): 420 e.1-9
Maharaj, R.
Extravascular lung water and acute lung injury
Cardiol. Res. Pract., 2011; 2012: 407035
Fernández Mondéjar, E., Guerrero López, F. y Colmenero, M.
How important is the measurement of extravascular lung water?
Curr. Opin. Crit. Care, 2007; 13: 79-83
Michard, F.
Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls
Crit. Care Med., 2007; 35(4):1186-92
Isakow, W. y Schuster, D. P.
Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter
Am. J. Physiol. Lung Cell. Mol. Physiol., 2006; 291: 1118-33
Pediátrico
Lemson, J., Nusmeier, A. y van der Hoeven, J. G.
Advanced Hemodynamic Monitoring in Critically Ill Children
Pediatrics, 2011; 128(3): 560-71
Artículos sobre la termodilución transpulmonar
Sakka, S. G., Reuter, D. A. y Perel, A.
The transpulmonary thermodilution technique
J. Clin. Monit. Comput., 2012; 26: 347-53
Oren-Grinberg, A.
The PiCCO Monitor
Int. Anesthesiol. Clin., 2010; 48(1): 57-85
Quemaduras
Sánchez Sánchez, M., García de Lorenzo, A., Herrero, E., López, T., Galván, B., Asensio, M. J., Cachafeiro, L. y Casado, C.
A protocol for resuscitation of severe burn patients guided by transpulmonary thermodilution and lactate levels: A 3-year prospective cohort study
Crit. Care., 2013; 17(4): R176
Csontos, C., Foldi, V., Fischer, T. y Bogar, L.
Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation.
Acta Anaesthesiol. Scand., 2008; 52(6): 742-9
Shock cardiogénico
Ritter, S., Rudiger, A. y Maggiorini, M.
Transpulmonary thermodilution derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study
Crit. Care., 2009; 13(4): R133
Friesecke, S., Heinrich, A., Abel, P. y Felix, S. B.
Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method.
Crit. Care Med., 2009; 37(1): 119-23
Pediatría
Kraft, R., Herndon, D. N., Branski, L. K., Finnerty, C. C., Leonard, K. R. y Jeschke, M. G.
Optimized fluid management improves outcomes of pediatric burn patients
J. Surg. Res., 2013; 181(1): 121-8
Lemson, J., Backx, A. P., van Oort, A. M., Bouw, T. P. y van der Hoeven, J. G.
Extravascular lung water measurement using transpulmonary thermodilution in children Pediatr. Crit. Care Med., 2009; 10(2): 227-33
Shock séptico
Chung, F. T., Lin, H. C., Kuo, C. H., Yu, C. T., Chou, C. L., Lee, K. Y., Kuo, H. P. y Lin, S. M.
Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis
PLoS One, 2010; 5(12): e15265
Martin, G. S., Eaton, S., Mealer, M. y Moss, M.
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit. Care., 2005; 9(2):R74-82
Cirugía en directo
Costa, M. G., Girardi, L., Pompei, L., Chiarandini, P., De Flaviis, A., Lugano, M., Mattelig, S., Tripi, G., Vetrugno, L., Baccarani, U., Scudeller, L. y Della Rocca, G.
Perioperative intra- and extravascular volume in liver transplant recipients
Transplant Proc., 2011; 43(4): 1098-102
LPA/SDRA
Jozwiak, M., Silva, S., Persichini, R., Anguel, N., Osman, D., Richard, C., Teboul, J. L. y Monnet, X.
Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome
Crit. Care Med., 2013; 41(2): 472-80
Letourneau, J. L., Pinney, J. y Phillips, C.
Extravascular lung water predicts progression to acute lung injury in patients with increased risk
Crit. Care Med., 2012; 40(3): 947-54
LPA/SDRA continuo
Monnet, X., Anguel, N., Osman, D., Hamzaoui, O., Richard, C. y Teboul, J. L.
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS
Intensive Care Medicine, 2007; 33 (3): 448-53
Cirugía cardíaca
Goepfert, M., Richter, H. P., Eulenburg, C. Z., Gruetzmacher, J., Rafflenbeul, E., Roeher, K., Sandersleben, A. V., Diedrichs, S., Reichenspurner, H., Goetz, A. E. y Reuter, D. A.
Individually Optimized Hemodynamic Therapy Reduces Complications and Length of Stay in the Intensive Care Unit: A Prospective, Randomized Controlled Trial
Anesthesiology, 2013; 119(4); 824-36
Neurocirugía
Mutoh, T., Kazumata, K., Ishikawa, T. y Terasaka, S.
Performance of Bedside Transpulmonary Thermodilution Monitoring for Goal-Directed Hemodynamic Management After Subarachnoid Hemorrhage
Stroke, 2009; 40(7); 2368-74
Flujo (gasto cardíaco)
Petzoldt, M., Riedel, C., Braeunig, J., Haas, S., Goepfert, M. S., Treede, H., Baldus, S., Goetz, A. E. y Reuter, D. A.
Stroke volume determination using transcardiopulmonary thermodilution and arterial pulse contour analysis in severe aortic valve disease
Intensive Care Med., 2013; 39(4): 601-11
Gruenewald, M., Meybohm, P., Renner, J., Broch, O., Caliebe, A., Weiler, N., Steinfath, M., Scholz, J. y Bein, B.
Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output
Crit. Care., 2011; 15(1): R22
Friesecke, S., Heinrich, A., Abel, P. y Felix, S. B.
Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method
Crit. Care Med., 2009; 37(1): 119-23
Lemson, J., de Boode, W. P., Hopman, J. C., Singh, S. K. y van der Hoeven, J. G.
Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model
Pediatr. Crit. Care Med., 2008; 9(3): 313-9
Felbinger, T. W., Reuter, D. A., Eltzschig, H. K., Bayerlein, J. y Goetz, A. E.
Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis
J. Clin. Anesth., 2005; 17(4):241-8
Marx, G., Schuerholz, T., Sumpelmann, R., Simon, T. y Leuwer, M.
Comparison of cardiac output measurements by arterial trans-cardiopulmonary and pulmonary arterial thermodilution with direct Fick in septic shock
Eur. J. Anaesthesiol., 2005; 22(2):129-34
Bein, B., Worthmann, F., Tonner, P. H., Paris, A., Steinfath, M., Hedderich, J. y Scholz, J.
Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output
J. Cardiothorac. Vasc. Anesth., 2004; 18(2):185-9
Godje, O., Hoke, K., Goetz, A. E., Felbinger, T. W., Reuter, D. A., Reichart, B., Friedl, R., Hannekum, A. y Pfeiffer, U. J.
Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability
Crit. Care Med., 2002; 30(1):52-8 Jul 2014
Precarga (volumen diastólico final global y volumen sanguíneo intratorácico)
Renner, J., Gruenewald, M., Brand, P., Steinfath, M., Scholz, J., Lutter, G. y Bein, B.
Global End-Diastolic Volume as a Variable of Fluid Responsiveness During Acute Changing Loading Conditions
J. Cardiothorac. Vasc. Anesth., 2007; 21(5): 650-4
Kozieras, J., Thuemer, O. y Sakka, S. G.
Influence of an acute increase in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients
Intensive Care Med., 2007; 33:1619-23
Michard, F., Alaya, S., Zarka, V., Bahloul, M., Richard, C. y Teboul, J. L.
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest, 2003; 124(5):1900-8
Contractilidad (fracción de eyección global, frecuencia cardíaca y contractilidad ventricular izquierda)
Aguilar, G., Belda, F. J., Ferrando, C. y Jover, J. L.
Assessing the left ventricular systolic function at the bedside: the role of transpulmonary thermodilution-derived indices
Anesthesiol. Res. Pract., 2011: 927421
Meybohm, P., Gruenewald, M., Renner, J., Maracke, M., Rossee, S., Hocker, J., Hagelsteins, S., Zacharowski, K. y Bein, B.
Assessment of left ventricular systolic function during acute myocardial ischemia: A comparison of transpulmonary thermodilution and transesophageal echocardiography
Minerva Anestesiol., 2011; 77(2): 132-41
Trepte, C. J., Eichhorn, V., Haas, S. A., Richter, H. P., Goepfert, M. S., Kubitz, J. C., Goetz, A. E. y Reuter, D. A.
Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function
Crit. Care Med., 2011; 39(9): 2106-12
Jabot, J., Monnet, X., Lamia, B., Chemla, D., Christian, R. y Teboul, J. L.
Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function
Crit. Care Med., 2009; 37(11): 2913-8
de Hert, S., Robert, D., Cromheecke, S., Michard, F., Nijs, J. y Rodrigues, I. E.
Evaluation of Left Ventricular Function in Anesthetised Patients Using Femoral Artery dP/dtmax
J. Cardio. Thor. Vasc. Anes., 2006; 20(3): 325-30
Combes, A., Berneau, J. B., Lut, C. E. y Trouillet, J. L.
Estimation of left ventricular systolic function by single transpulmonary thermodilution
Intensive Care Med., 2004; 30(7): 1377-83 Jul 2014 PiCCO (Validación de textos relacionados con la tecnología, página 3)
Resistencia vascular (variación del volumen sistólico y variación de la presión de pulso)
Kubitz, J. C., Annecke, T., Forkl, S., Kemming, G. I., Kronas, N., Goetz, A. E. y Reuter, D. A.
Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload
Br. J. Anaesth., 2007; 98(5): 591-7
Hofer, C. K., Muller, S. M., Furrer, L., Klaghofer, R., Genoni, M. y Zollinger, A.
Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting
Chest, 2005; 128(2):848-54
Reuter, D. A., Kirchner, A., Felbinger, T. W., Weis, F. C., Kilger, E., Lamm, P. y Goetz, A. E.
Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function
Crit. Care Med., 2003; 31(5):1399-404
Edema pulmonar (agua pulmonar extravascular)
Venkateswaran, R. V., Dronavalli, V., Patchell, V., Wilson, I., Mascaro, J., Thompson, R., Coote, J. y Bonser, R. S.
Measurement of extravascular lung water following human brain death; implications for lung donor assessment and transplantation
Eur. J. Cardiothorac. Surg., 2013; 43(6): 1227-32
Tagami, T., Kushimoto, S., Yamamoto, Y., Atsumi, T., Tosa, R., Matsuda, K., Oyama, R., Kawaguchi, T., Masuno, T., Hirama, H. y Yokota, H.
Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study
Crit. Care., 2010; 14(5): R162
Lemson, J., Backx, A. P., van Oort, A. M., Bouw, T. P. y van der Hoeven, J. G.
Extravascular lung water measurement using transpulmonary thermodilution in children
Pediatr. Crit. Care Med., 2009; 10(2): 227-33
Monnet, X., Anguel, N., Osman, D., Hamzaoui, O., Richard, C. y Teboul, J. L.
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS
Intensive Care Medicine, 2007; 33(3):448-53
Kirov, M. Y., Kuzkov, V. V., Kuklin, V. N., Waerhaug, K. y Bjertnaes, L. J.
Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep
Crit. Care., 2004; 8(6):R451-8
Katzenelson, R., Perel, A., Berkenstadt, H., Preisman, S., Kogan, S., Sternik, L. y Segal, E.
Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water
Crit. Care Med., 2004; 32(7):1550-4
Sakka, S. G., Ruhl, C. C., Pfeiffer, U. J., Beale, R., McLuckie, A., Reinhart, K. y Meier-Hellmann, A.
Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution
Intensive Care Medicine, 2000; 26 (2):180-7
Publicaciones
Casos de estudio, directrices y procedimientos operativos estándar
Casos de estudio
Mutoh, T., Kazumata, K., Terasaka, S., Taki, Y., Suzuki, A. e Ishikawa, T.
Early Intensive Versus Minimally Invasive Approach to Postoperative Hemodynamic Management After Subarachnoid Hemorrhage
Stroke, 2014; 45(5): 1280-4
Hu, W., Lin, C. W., Liu, B. W., Hu, W. H. y Zhu, Y.
Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome
Multidiscip. Respir. Med., 2014; 9(1): 3
Goepfert, M., Richter, H. P., Eulenburg, C. Z., Gruetzmacher, J., Rafflenbeul, E., Roeher, K., Sandersleben, A. V., Diedrichs, S., Reichenspurner, H., Goetz, A. E. y Reuter, D. A.
Individually Optimized Hemodynamic Therapy Reduces Complications and Length of Stay in the Intensive Care Unit: A Prospective, Randomized Controlled Trial
Anesthesiology, 2013; 119(4); 824-36
Kraft, R., Herndon, D. N., Branski, L. K., Finnerty, C. C., Leonard, K. R. y Jeschke, M. G.
Optimized fluid management improves outcomes of pediatric burn patients
J. Surg. Res., 2013; 181(1): 121-8
Adler, C., Reuter, H., Seck, C., Hellmich, M. y Zobel, C.
Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest
Resuscitation, 2013; 84(2): 194-9
Lenkin, A. I., Kirov, M. Y., Kuzkov, V. V., Paromov, K. V., Smetkin, A. A., Lie, M. y Bjertnaes, L. J.
Comparison of goal-directed hemodynamic optimization using pulmonary artery catheter and transpulmonary thermodilution in combined valve repair: a randomized clinical trial
Crit. Care Res. Pract., 2012: 821218.
Pino Sánchez, F., Lara Rosales, R., Guerrero López, F., Chamorro Marín, V., Navarrete Navarro, P., Carazo de la Fuente, E. y Fernández Mondéjar, E.
Influence of extravascular lung water determination in fluid and vasoactive therapy
J. Trauma., 2009; 67(6): 1220-4
Mutoh, T., Kazumata, K., Ishikawa, T. y Terasaka, S.
Performance of Bedside Transpulmonary Thermodilution Monitoring for Goal-Directed Hemodynamic Management After Subarachnoid Hemorrhage
Stroke, 2009; 40(7): 2368 - 74
Smetkin, A. A., Kirov, M., Kuzkov, V. V., Lenkin, A. I., Eremeev, A. V., Slastilin, V. Y., Borodin, V. V. y Bjertnaes, L. J.
Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery
Acta Anaesthesiol. Scand., 2009; 53: 505-14 Jul 2014 PiCCO (casos de estudio relacionados con la tecnología y procedimientos operativos estándar, página 2)
Csontos, C., Foldi, V., Fischer, T. y Bogar, L.
Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation
Acta Anaesthesiol. Scand., 2008; 52(6): 742-9
Goepfert, M., Reuter, D., Akyol, D., Lamm, P., Kilger, E. y Goetz, A.
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine, 2007; 33: 96-103
Mitchell, J. P., Schuller, D., Calandrino, F. S. y Schuster, D. P.
Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization
Am. Rev. Respir. Dis., 1992; 145(5): 990-8
Directrices y procedimientos operativos estándar
Reinhart, K., Brunkhorst, F. M., Bone, H. G., Bardutzky, J., Dempfle, C. E., Forst, H., Gastmeier, P., Gerlach, H. et al.
Prevention, diagnosis, treatment, and follow-up care of sepsis. [Primera revisión de las Directrices S2k de la Sociedad Alemana de la Sepsis (DSG)y la Asociación Interdisciplinar Alemana para los Cuidados Intensivos y de Emergencia (DIVI)]
Anaesthesist, 2010; 59(4): 347-70
Carl, M., Alms, A., Braun, J., Dongas, A., Erb, J., Goetz, A., Goepfert, M., Gogarten, W., Grosse, J., Heller, A. R. et al.
S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculary system
Ger. Med. Sci., 2010; 8: Doc12 (artículo en alemán)
Brierley, J., Choong, K., Cornell, T., Decaen, A., Deymann, A., Doctor, A., Davis, A., Duff, J., Dugas, M. A. et al.
2007 American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock
Crit. Care Med., 2009; 37(2): 666 – 688
Dellinger, R. P., Levy, M. M., Carlet, J. M., Bion, J., Parker, M. M., Jaeschke, R., Reinhart, K., Angus, D. C., Brun-Buisson, C. et al.
Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
Intensive Care Med., 2008; 34(1): 17-60
Kortgen, A., Niederprün, P. y Bauer, M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock
Crit. Care Med., 2006; 34(4): 939-9
LPA/SDRA, uso clínico
Hu, W., Lin, C. W., Liu, B. W., Hu, W. H. y Zhu, Y.
Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome
Multidiscip. Respir. Med., 2014; 9(1): 3
Brown, L. M., Calfee, C. S., Howard, J. P., Craig, T. R., Matthay, M. A. y McAuley, D. F.
Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury
Ann. Intensive Care, 2013; 3(1): 25
Kushimoto, S., Endo, T., Yamanouchi, S., Sakamoto, T., Ishikura, H., Kitazawa, Y. et al.
Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition
Crit. Care., 2013; 17(4): R132
Tagami, T., Sawabe, M., Kushimoto, S., Marik, P., Mieno, M. N., Kawaguchi, T., Kusakabe, T., Tosa, R., Yokota, H. y Fukuda, M.
Quantitative Diagnosis of Diffuse Alveolar Damage Using Extravascular Lung Water
Crit. Care Med., 2013; 41(9); 2144-50
Jozwiak, M., Silva, S., Persichini, R., Anguel, N., Osman, D., Richard, C., Teboul, J. L. y Monnet, X.
Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome
Crit. Care Med., 2013; 41(2): 472-80
Kushimoto, S., Taira, T., Taira, Y., Kitazawa, Y., Okuchi, K., Sakamoto, T., Ishikura, H., Endo, T., Yamanouchi, S., Tagami, T., Yamaguchi, J. et al,.
The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome
Crit. Care, 2012; 16(6): R232
Letourneau, J. L., Pinney, J. y Phillips, C.
Extravascular lung water predicts progression to acute lung injury in patients with increased risk
Crit. Care Med., 2012; 40(3): 947-54
Craig, T. R., Duffy, M. J., Shyamsundar, M., McDowell, C., McLaughlin, B., Elborn, J. S. y McAuley, D.
Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury
Crit. Care Med., 2010; 38(1): 114-20
Berkowitz, D. M., Danai, P. A., Eaton, S., Moss, M. y Martin, G.
Accurate characterization of extravascular lung water in acute respiratory distress syndrome
Crit. Care Med., 2008; 36(6): 1803-9
Phillips, C., Chesnutt, M. y Smith, M.
Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival
Crit. Care Med., 2008; 36(1); 69-73
Monnet, X., Anguel, N., Osman, D., Hamzaoui, O., Richard, C. y Teboul, J. L.
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS
Intensive Care Medicine, 2007; 33(3): 448-53
Perkins, G. D., McAuley, D. F., Thickett, D. R. y Gao, F.
The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial
Am. J. Respir. Crit. Care Med., 2006; 173(3): 281-7
Quemaduras
Sánchez Sánchez, M., García de Lorenzo, A., Herrero, E., López, T., Galván, B., Asensio, M. J., Cachafeiro, L. y Casado, C.
A protocol for resuscitation of severe burn patients guided by transpulmonary thermodilution and lactate levels: A 3-year prospective cohort study
Crit. Care., 2013; 17(4): R176
Branski, L. K., Herndon, D. N., Byrd, J. F., Kinsky, M. P., Lee, J. O., Fagan, S. P. y Jeschke, M. G.
Transpulmonary thermodilution for hemodynamic measurements in severely burned children
Crit. Care., 2011; 15(2): R118
Bognar, Z., Foldi, V., Rezman, B., Bogar, L. y Csontos, C.
Extravascular lung water index as a sign of developing sepsis in burns
Burns, 2010; 8: 1263-70
Csontos, C., Foldi, V., Fischer, T. y Bogar, L.
Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation
Acta Anaesthesiol. Scand., 2008; 52(6): 742-9
Holm, C., Mayr, M., Horbrand, F., Tegeler, J., Henckel von Donnersmarck, G., Muhlbauer, W. y Pfeiffer, U. J.
Reproducibility of transpulmonary thermodilution measurements in patients with burn shock and hypothermia
J. Burn Care Rehabil., 2005; 26(3):260-5
Holm, C., Melcer, B., Horbrand, F., Henckel von Donnersmarck, G. y Muhlbauer, W.
Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients
Burns, 2001; 27(2):161-6
Holm, C., Melcer, B., Horbrand, F., Worl, H., von Donnersmarck, G. H. y Muhlbauer, W.
Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients
J. Trauma., 2000; 48(4):728-34
Cirugía del corazón
Goepfert, M., Richter, H. P., Eulenburg, C. Z., Gruetzmacher, J., Rafflenbeul, E., Roeher, K., Sandersleben, A. V., Diedrichs, S., Reichenspurner, H., Goetz, A. E. y Reuter, D. A.
Individually Optimized Hemodynamic Therapy Reduces Complications and Length of Stay in the Intensive Care Unit: A Prospective, Randomized Controlled Trial
Anesthesiology, 2013; 119(4); 824-36
Staier, K., Wilhelm, M., Wiesenack, C., Thoma, M. y Keyl, C.
Pulmonary artery vs. transpulmonary thermodilution for the assessment of cardiac output in mitral regurgitation: a prospective method comparison study
Eur. J. Anaesthesiol., 2012; 29(9): 431-7
Smetkin, A. A., Kirov, M., Kuzkov, V. V., Lenkin, A. I., Eremeev, A. V., Slastilin, V. Y., Borodin, V. V. y Bjertnaes, L. J.
Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery
Acta Anaesthesiol. Scand., 2009; 53: 505-14
Goepfert, M., Reuter, D., Akyol, D., Lamm, P., Kilger, E. y Goetz, A.
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine, 2007; 33: 96-103
Wouters, P. F., Quaghebeur, B., Sergeant, P., Van Hemelrijck, J. y Vandermeersch, E.
Cardiac output monitoring using a brachial arterial catheter during off-pump coronary artery bypass grafting
J. Cardiothorac. Vasc. Anesth., 2005; 19: 160-4
Bettex, D. A., Hinselmann, V., Hellermann, J. P., Jenni, R., Schmid, E. R.
Transoesophageal echocardiography is more unreliable for cardiac output assessment after cardiac surgery compared with thermodilution
Anesthesia, 2004; 59:1184-92
Mielck, F., Buhre, W., Hanekop, G., Tirilomis, T., Hilgers, R. y Sonntag, H.
Comparison of continuous cardiac output measurements in patients after cardiac surgery
J. Cardiothorac. Vasc. Anesth., 2003; 17(2):211-6
Buhre, W., Weyland, A., Kazmaier, S., Hanekop, G. G., Baryalei, M. M., Sydow, M. y Sonntag, H.
Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting
J. Cardiothorac. Vasc. Anesth., 1999; 13(4):437-40
Godje, O., Hoke, K., Lamm, P., Schmitz, C., Thiel, C., Weinert, M. y Reichart, B.
Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery
Thorac. Cardiovasc. Surg., 1998; 46(4):242-9
Shock cardiogénico
Ritter, S., Rudiger, A. y Maggiorini, M.
Transpulmonary thermodilution derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study
Crit. Care., 2009; 13(4): R133
Friesecke, S., Heinrich, A., Abel, P. y Felix, S. B.
Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method
Crit. Care Med., 2009; 37(1): 119-23
Janda, M., Scheeren, T. W. L., Bajorat, J., Westphal, B., Vagts, D. A., Pohl, B., Popescu, C. y Hofmockel, R.
The impact of Intra-aortic Balloon Pumping on Cardiac Output Determination by Pulmonary Arterial and Transpulmonary Thermodilution in Pigs
J. of Cardiovasc. and Vasc. Anesth., 2006; 20 (3):320-4
Shock hipovolémico
Nirmalan, M., Niranjan, M., Willard, T., Edwards, J. D., Little, R. A. y Dark, P. M.
Estimation of errors in determining intrathoracic blood volume using thermal dilution in pigs with acute lung injury and haemorrhage
Br. J. Anaesth., 2005; 93(4):546-51
Berkenstadt, H., Friedman, Z., Preisman, S., Keidan, I., Livingstone, D. y Perel, A.
Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs
Br. J. Anaesth., 2005; 94(6): 721-6
Friedman, Z., Berkenstadt, H., Margalit, N., Segal, E. y Perel
Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique
Eur. J. Anaesthesiol., 2002; 19(5):337-40
UCI médica
Dres, M., Teboul, J. L., Guerin, L., Anguel, N., Amilien, V., Clair, M. P., Gruner, A., Richard, C. y Monnet, X.
Extravascular Lung Water, B-Type Natriuretic Peptide, and Blood Volume Contraction Enable Diagnosis of Weaning-Induced Pulmonary Edema
Crit. Care Med., 2014; publicación online
Dres, M., Teboul, J. L., Guerin, L., Anguel, N., Amilien, V., Clair, M. P., Gruner, A., Richard, C. y Monnet, X.
Transpulmonary Thermodilution Enables to Detect Small Short-Term Changes in Extravascular Lung Water Induced by a Bronchoalveolar Lavage
Crit. Care Med., 2014; publicación online
Trepte, C. J., Bachmann, K. A., Stork, J. H., Friedheim, T. J., Hinsch, A., Goepfert, M. S., Mann, O., Izbicki, J. R., Goetz, A. E. y Reuter, D. A.
The impact of early goal-directed fluid management on survival in an experimental model of severe acute pancreatitis
Intensive Care Med., 2013; 39(4): 717-26
Chew, M. S., Ihrman, L., During, J., Bergenzaun, L., Ersson, A., Unden, J., Ryden, J., Akerman, E. y Larsson, M.
Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock
Crit. Care, 2012; 16(1): R1
Saugel, B., Ringmaier, S., Holzapfel, K., Schuster, T., Phillip, V., Schmid, R. M. y Huber, W.
Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: A prospective trial
J. Crit. Care, 2011; 26(4): 402-10
Huber, W., Umgelter, A., Reindl, W., Franzen, M., Schmidt, C., von Delius, S., Geisler, F., Eckel, F., Fritsch, R., Siveke, J., Henschel, B. y Schmid, R. M.
Volume assessment in patients with necrotizing pancreatitis: A comparison of intrathoracic blood volume index (ITBI), central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index
Crit. Care Med., 2008; 36 (8): 2348-54
Chung, F. T., Lin, S. M., Lin, S. Y. y Lin, H. C.
Impact of extravascular lung water index on outcomes of severe sepsis patients in a medical intensive care unit
Respir. Med., 2008; 102(7): 956-61
Kortgen, A., Niederprün, P. y Bauer, M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock
Crit. Care Med., 2006; 34 (4):939-9
Mitchell, J. P., Schuller, D., Calandrino, F. S. y Schuster, D. P.
Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization
Am. Rev. Respir. Dis., 1992; 145(5):990-8
Neurología/neurocirugía
Mutoh, T., Kazumata, K., Terasaka, S., Taki, Y., Suzuki, A. e Ishikawa, T.
Early Intensive Versus Minimally Invasive Approach to Postoperative Hemodynamic Management After Subarachnoid Hemorrhage
Stroke, 2014; 45(5): 1280-4
Tagami, T., Kuwamoto, K., Watanabe, A., Unemoto, K., Yokobori, S., Matsumoto, G. y Yokota, H.
Optimal Range of Global End-Diastolic Volume for Fluid Management After Aneurysmal Subarachnoid Hemorrhage: A Multicenter Prospective Cohort Study
Crit. Care Med., 2014; publicación online
Yoneda, H., Nakamura, T., Shirao, S., Tanaka, N., Ishihara, H., Suehiro, E., Koizumi, H., Isotani, E. y Suzuki, M.
Multicenter Prospective Cohort Study on Volume Management After Subarachnoid Hemorrhage: Hemodynamic Changes According to Severity of Subarachnoid Hemorrhage and Cerebral Vasospasm
Stroke, 2013; 44(8); 2155-61
Sato, Y., Isotani, E., Kubota, Y., Otomo, Y. y Ohno, K.
Circulatory characteristics of normovolemia and normotension therapy after subarachnoid hemorrhage, focusing on pulmonary edema
Acta Neurochir. (Viena), 2012; 154(12): 2195-202
Mutoh, T., Kazumata, K., Kobayashi, S., Terasaka, S. e Ishikawa, T.
Serial Measurement of Extravascular Lung Water and Blood Volume During the Course of Neurogenic Pulmonary Edema after Subarachnoid Hemorrhage: Initial Experience With 3 Cases
J. Neurosurg. Anesthesiol., 2011; 24(3): 203-8
Lazaridis, C.
Advanced Hemodynamic Monitoring: Principles and Practice in Neurocritical Care
Neurocrit. Care, 2012; 16(1): 163-9
Verein, M., Valiahmedov, A., Churliaev, Y., Sitnikov, P., Redkokasha, L. y Lukashev, K.
Dynamics of extravascular pulmonary water and intracranial pressure in patients with ischemic stroke
Semin. Cardiothorac. Vasc. Anesth., 2010; 14(4): 226-30
Mutoh, T., Kazumata, K., Ishikawa, T. y Terasaka, S.
Performance of Bedside Transpulmonary Thermodilution Monitoring for Goal-Directed Hemodynamic Management After Subarachnoid Hemorrhage
Stroke, 2009; 40(7): 2368 - 74
Mutoh, T., Kazumata, K., Ajiki, M., Ushikoshi, S. y Terasaka, S.
Goal-Directed Fluid Management by Bedside Transpulmonary Hemodynamic Monitoring After Subarachnoid Hemorrhage
Stroke, 2007; 38(12): 3218-24
Segal, E., Greenlee, J. D., Hata, S. J. y Perel, A.
Monitoring intravascular volumes to direct hypertensive, hypervolemic therapy in a patient with vasospasm
J. Neurosurg. Anesthesiol., 2004; 16(4):296-8
Berkenstadt, H., Margalit, N., Hadani, M., Friedman, Z., Segal, E., Villa, Y. y Perel, A.
Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery
Anesth. Analg., 2001; 92(4):984-9
Pediatría
Kraft, R., Herndon, D. N., Branski, L. K., Finnerty, C. C., Leonard, K. R. y Jeschke, M. G.
Optimized fluid management improves outcomes of pediatric burn patients
J. Surg. Res., 2013; 181(1): 121-8
Nusmeier, A., de Boode, W. P., Hopman, J. C., Schoof, P. H., van der Hoeven, J. G. y Lemson, J.
Cardiac output can be measured with the transpulmonary thermodilution method in a paediatric animal model with a left-to-right shunt
Br. J. Anaesth., 2011; 107: 336-43
Branski, L. K., Herndon, D. N., Byrd, J. F., Kinsky, M. P., Lee, J. O., Fagan, S. P. y Jeschke, M. G.
Transpulmonary thermodilution for hemodynamic measurements in severely burned children
Crit. Care., 2011; 15(2): R118
Lubrano, R., Cecchetti, C., Tomasello, C., Guido, G., Di Nardo, M., Masciangelo, R., Pasotti, E., Barbieri, M. A., Bellelli, E. y Pirozzi, N.
Prognostic value of extravascular lung water index in critically ill children with acute respiratory failure
Intensive Care Med., 2011; 37(1): 124-131
Lemson, J., Merkus, P. y van der Hoeven, J. G.
Extravascular lung water index and global end-diastolic volume index should be corrected in children
J. Crit. Care, 2011; 26(4): 443 e7- 432 e12
López Herce, J., Bustinza, A., Sancho, L., Mencia, S., Carrillo, A., Moral, R. y Bellón, J. M.
Cardiac output and blood volume parameters using femoral arterial thermodilution
Pediatr. Int., 2009; 51(1): 59-65
Lemson, J., Backx, A. P., van Oort, A. M., Bouw, T. P. y van der Hoeven, J. G.
Extravascular lung water measurement using transpulmonary thermodilution in children
Pediatr. Crit. Care Med., 2009; 10(2): 227-33
Lemson, J., de Boode, W. P., Hopman, J. C., Singh, S. K. y van der Hoeven, J. G.
Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model
Pediatr. Crit. Care Med., 2008; 9(3): 313-9
Fakler, U., Pauli, Ch., Balling, G., Lorenz, H. P., Eicken, A., Hennig, M. y Hess, J.
Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery
J. of Thorac. Cardiovasc. Surg., 2007; 133(1):224–8
López Herce, J., Rupérez, M., Sánchez, C., García, C. y García, E.
Hemodynamic response to acute hypovolaemia, rapid blood volume expansion and adrenaline administration in an infant animal model
Resuscitation, 2006; 68: 259-65
Egan, J., Festa, M., Cole, A., Nunn, G. R., Gillis, J. y Winlaw, D. S.
Clinical assessment of cardiac performance in infants and children following cardiac surgery
Intensive Care Med., 2005; 31(4):568-73
Torgay, A., Pirat, A., Akpek, E., Zeyneloglu, P., Arslan, G. y Haberal, M.
Pulse contour cardiac output system use in pediatric orthotopic liver transplantation: preliminary report of nine patients
Transplant Proc., 2005; 37(7):3168-70
Cecchetti, C., Stoppa, F., Vanacore, N., Barbieri, M. A., Raucci, U., Pasotti, E., Tomasello, C., Marano, M. y Pirozzi, N.
Monitoring of intrathoracic volemia and cardiac output in critically ill children
Minerva Anestesiol., 2003; 69:907-18
Pauli, C., Fakler, U., Genz, T., Hennig, M., Lorenz, H. P. y Hess, J.
Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle
Intensive Care Med., 2002; 28(7):947-52
Schiffmann, H., Erdlenbruch, B., Singer, D., Singer, S., Herting, E., Hoeft, A. y Buhre, W.
Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants
J. Cardiothorac. Vasc. Anesth., 2002; 16(5):592-7
Shock séptico
Chung, F. T., Lin, H. C., Kuo, C. H., Yu, C. T., Chou, C. L., Lee, K. Y., Kuo, H. P. y Lin, S. M.
Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis
PLoS One, 2010; 5(12): e15265
Ritter, S., Rudiger, A. y Maggiorini, M.
Transpulmonary thermodilution derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study
Crit. Care., 2009; 13(4): R133
Osman, D., Ridel, C., Ray, P., Monnet, X., Anguel, N., Richard, C. y Teboul, J. L.
Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge
Crit. Care Med., 2007; 35(1):64-9
Kortgen, A., Niederprün, P. y Bauer, M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock
Crit. Care Med., 2006; 34 (4):939-9
Martin, G. S., Eaton, S., Mealer, M. y Moss, M.
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit. Care., 2005; 9(2):R74-82
Michard, F., Alaya, S., Zarka, V., Bahloul, M., Richard, C. y Teboul, J. L.
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest, 2003; 124(5):1900-8
Cuidados intensivos quirúrgicos
Oshima, K., Kunimoto, F., Hinohara, H., Hayashi, Y., Kanemaru, Y., Takeyoshi, I. y Kuwano, H.
Evaluation of respiratory status in patients after thoracic esophagectomy using PiCCO system
Ann. Thorac. Cardiovasc. Surg., 2008; 14(5): 283-8
Sato, Y., Motoyama, S., Maruyama, M., Hayashi, K., Nakae, H., Tajimi, K. y Ogawa, J.
Extravascular Lung Water Measured Using Single Transpulmonary Thermodilution Reflects Perioperative Pulmonary Edema Induced by Esophagectomy
Eur. Surg. Res., 2006; 39(1): 7-13
Groeneveld, A. B., Verheij, J., van den Berg, F. G., Wisselink, W. y Rauwerda, J. A.
Increased pulmonary capillary permeability and extravascular lung water after major vascular surgery: effect on radiography and ventilatory variables
Eur. J. Anaesthesiol., 2006; 23(1):36-41
Deja, M., Hildebrandt, B., Ahlers, O., Riess, H., Wust, P., Gerlach, H. y Kerner, T.
Goal-directed therapy of cardiac preload in induced whole-body hyperthermia
Chest, 2005; 128(2):580-6
Michard, F., Schachtrupp, A. y Toens, C.
Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients
Crit. Care Med., 2005; 33(6):1243-7
Trasplante
Reydellet, L., Blasco, V., Mercier, M. F., Antonini, F., Nafati, C., Harti-Souab, K., Leone, M. y Albanese, J.
Impact of a goal-directed therapy protocol on postoperative fluid balance in patients undergoing liver transplantation: A retrospective study
Ann. Fr. Anesth. Reanim., 2014; publicación online
Minambres, E., Coll, E., Duerto, J., Suberviola, B., Mons, R., Cifrian, J. M., Ballesteros, M. A.
Effect of an intensive lung donor-management protocol on lung transplantation outcomes
J. Heart Lung Transplant., 2014; 33(2): 178-84
Venkateswaran, R. V., Dronavalli, V., Patchell, V., Wilson, I., Mascaro, J., Thompson, R., Coote, J. y Bonser, R. S.
Measurement of extravascular lung water following human brain death; implications for lung donor assessment and transplantation
Eur. J. Cardiothorac. Surg., 2013; 43(6): 1227-32
Costa, M. G., Girardi, L., Pompei, L., Chiarandini, P., De Flaviis, A., Lugano, M., Mattelig, S., Tripi, G., Vetrugno, L., Baccarani, U., Scudeller, L. y Della Rocca, G.
Perioperative intra- and extravascular volume in liver transplant recipients
Transplant Proc., 2011; 43(4): 1098-102
Venkateswaran, R., Patchell, V., Wilson, I., Mascaro, J., Thompson, R., Quinn, D., Stockley, R., Coote, J. y Bonser, R.
Early donor management increases the retrieval rate of lungs for transplantation
Ann. Thorac. Surg., 2008; 85: 278-86
Della Rocca, G., Costa, G. M., Coccia, C., Pompei, L., Di Marco, P. y Pietropaoli, P.
Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation
Anesth. Analg., 2002; 95(4):835-43
Della Rocca, G., Costa, M. G., Coccia, C., Pompei, L., Pietropaoli, P.
Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques
Eur. J. Anaesthesiol., 2002; 19(12):868-75
Della Rocca, G., Costa, M. G., Pompei, L., Coccia, C., Pietropaoli, P.
Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique
Br. J. Anaesth., 2002; 88(3):350-6
Goedje, O., Seebauer, T., Peyerl, M., Pfeiffer, U. J., Reichart, B.
Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation
Chest, 2000; 118(3):775-81
Resección pulmonar
Naidu, B. V., Dronavalli, V. D. y Rajesh, P. B.
Measuring lung water following major lung resection
Interact. Cardiovasc. Thorac. Surg., 2009; 8(5): 503-6
Kuzkov, V. V., Suborov, E. V., Kirov, M. Y., Kuklin, V. N., Sobhkhez, M., Johnsen, S., Waerhaug, K. y Bjertnaes, L. J.
Extravascular lung water after pneumonectomy and one-lung ventilation in sheep
Crit. Care Med., 2007; 35 (6):1550-9
Roch, A., Michelet, P., D'Journo, B., Brousse, D., Blayac, D., Lambert, D. y Auffray, J. P.
Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy
Chest, 2005; 128(2):927-33
Traumatología
Pino Sánchez, F., Lara Rosales, R., Guerrero López, F., Chamorro Marín, V., Navarrete Navarro, P., Carazo de la Fuente, E. y Fernández Mondéjar, E.
Influence of extravascular lung water determination in fluid and vasoactive therapy
J. Trauma., 2009; 67(6): 1220-4
Berkenstadt, H., Friedman, Z., Preisman, S., Keidan, I., Livingstone, D. y Perel, A.
Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs
Br. J. Anaesth., 2005; 94 (6): 721-6
Friedman, Z., Berkenstadt, H., Margalit, N., Segal, E. y Perel, A.
Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique
Eur. J. Anaesthesiol., 2002; 19(5):337-40
Parámetros PiCCO en diferentes situaciones clínicas
Adler, C., Reuter, H., Seck, C., Hellmich, M. y Zobel, C.
Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest
Resuscitation, 2013; 84(2): 194-9
Saugel, B., Phillip, V., Ernesti, C., Messer, M., Meidert, A. S., Schmid, R. M. y Huber, W.
Impact of large-volume thoracentesis on transpulmonary thermodilution-derived extravascular lung water in medical intensive care unit patients
J. Crit. Care, 2013; 28(2): 196-201
Dufour, N., Delville, M., Teboul, J. L., Camous, L., Favier du Noyer, A., Richard, C. y Monnet, X.
Transpulmonary thermodilution measurements are not affected by continuous veno-venous hemofiltration at high blood pump flow
Intensive Care Med., 2012; 38(7): 1162-8
Tagami, T., Kushimoto, S., Tosa, R., Omura, M., Hagiwara, J., Hirama, H. y Yokota, H.
The precision of PiCCO((R)) measurements in hypothermic post-cardiac arrest patients
Anaesthesia, 2012; 67(3): 236-243
Heise, D., Faulstich, M., Morer, O., Brauer, Quintel, M.
Influence of continuous renal replacement therapy on cardiac output measurement using thermodilution techniques
Minerva Anestesiol., 2012; 78(3): 315-21
Monnet, X., Persichini, R., Ktari, M., Jozwiak, M., Richard, C. y Teboul, J. L.
Precision of the transpulmonary thermodilution measurements
Crit. Care., 2011; 15(4): R204
Saugel, B., Umgelter, A., Schuster, T., Phillip, V., Schmid, R. M. y Huber, W.
Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter
Crit. Care., 2010; 14(3): R95
Schmidt, S., Westhoff, T. H., Hofmann, C., Schaefer, J. H., Zidek, W., Compton, F. y van der Giet, M.
Effect of the venous catheter site on transpulmonary thermodilution measurement variables
Crit. Care Med., 2007; 35(3):783-6
Compton, F., Hoffmann, C., Zidek, W., Schmidt, S. y Schaefer, J. H.
Volumetric hemodynamic parameters to guide fluid removal on hemodialysis in the intensive care unit
Hemodial Int., 2007; 11(2):231-7
Sakka, S., Hanusch, T., Thuemer y Wegscheider, K.
The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique
Anesth. Analg., 2007; 105(4):1079–82
Kuhn, C., Kuhn, A., Rykow, K. y Osten, B.
Extravascular lung water index: A new method to determine dry weight in chronic hemodialysis patients
Hemodial Int., 2006; 10(1): 68-72
Janda, M., Scheeren, T. W. L., Bajorat, J., Westphal, B., Vagts, D. A., Pohl, B., Popescu, C. y Hofmockel, R.
The impact of Intra-aortic Balloon Pumping on Cardiac Output Determination by Pulmonary Arterial and Transpulmonary Thermodilution in Pigs
J. of Cardiovasc. and Vasc. Anesth., 2006; 20 (3):320-4
Michelet, P., Roch, A., Gainnier, M., Sainty, J. M., Auffray, J. P. y Papazian, L.
Influence of support on intra-abdominal pressure, hepatic kinetics of indocyanine green and extravascular lung water during prone positioning in patients with ARDS: a randomized crossover study
Crit. Care., 2005; 9(3):R251-7
Wiesenack, C., Prasser, C., Liebold, A. y Schmid, F. X.
Assessment of left ventricular cardiac output by arterial thermodilution technique via a left atrial catheter in a patient on a right ventricular assist device
Perfusion, 2004; 19(1):73-5
Luecke, T., Roth, H., Herrmann, P., Joachim, A., Weisser, G., Pelosi, P. y Quintel, M.
PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury
Intensive Care Med., 2003; 29(11):2026-33
Reuter, D. A., Felbinger, T. W., Schmidt, C., Moerstedt, K., Kilger, E., Lamm, P. y Goetz, A. E.
Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance
Eur. J. Anaesthesiol., 2003; 20(1):17-20
Hofer, C. K., Zalunardo, M. P., Klaghofer, R., Spahr, T., Pasch, T. y Zollinger, A.
Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning
Acta Anaesthesiol. Scand., 2002; 46(3):303-8
Kampen, J., Liess, K., Casadio, C., Tonner, P. H. y Scholz, J.
Thermal lesions caused by a PiCCO catheter left in place in the MRT
Intensivmedizin und Notfallmedizin, 2002; 39(1):113
Descargar
Productos relacionados
Monitor PulsioFlex
Plataforma modular con visualización inteligente para monitorización avanzada del paciente
Tecnología LiMON
Monitorización no invasiva de la función hepática o la perfusión esplácnica